#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements.  See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License.  You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""
Python package for statistical functions in MLlib.
"""
from pyspark import RDD
from pyspark.mllib.common import callMLlibFunc, JavaModelWrapper
from pyspark.mllib.linalg import Matrix, _convert_to_vector
from pyspark.mllib.regression import LabeledPoint
__all__ = ['MultivariateStatisticalSummary', 'ChiSqTestResult', 'Statistics']
[docs]class MultivariateStatisticalSummary(JavaModelWrapper):
    """
    Trait for multivariate statistical summary of a data matrix.
    """
[docs]    def mean(self):
        return self.call("mean").toArray()
 
[docs]    def variance(self):
        return self.call("variance").toArray()
 
[docs]    def count(self):
        return self.call("count")
 
[docs]    def numNonzeros(self):
        return self.call("numNonzeros").toArray()
 
[docs]    def max(self):
        return self.call("max").toArray()
 
[docs]    def min(self):
        return self.call("min").toArray()
  
[docs]class ChiSqTestResult(JavaModelWrapper):
    """
    :: Experimental ::
    Object containing the test results for the chi-squared hypothesis test.
    """
    @property
[docs]    def method(self):
        """
        Name of the test method
        """
        return self._java_model.method()
 
    @property
[docs]    def pValue(self):
        """
        The probability of obtaining a test statistic result at least as
        extreme as the one that was actually observed, assuming that the
        null hypothesis is true.
        """
        return self._java_model.pValue()
 
    @property
[docs]    def degreesOfFreedom(self):
        """
        Returns the degree(s) of freedom of the hypothesis test.
        Return type should be Number(e.g. Int, Double) or tuples of Numbers.
        """
        return self._java_model.degreesOfFreedom()
 
    @property
[docs]    def statistic(self):
        """
        Test statistic.
        """
        return self._java_model.statistic()
 
    @property
[docs]    def nullHypothesis(self):
        """
        Null hypothesis of the test.
        """
        return self._java_model.nullHypothesis()
 
    def __str__(self):
        return self._java_model.toString()
 
[docs]class Statistics(object):
    @staticmethod
[docs]    def colStats(rdd):
        """
        Computes column-wise summary statistics for the input RDD[Vector].
        :param rdd: an RDD[Vector] for which column-wise summary statistics
                    are to be computed.
        :return: :class:`MultivariateStatisticalSummary` object containing
                 column-wise summary statistics.
        >>> from pyspark.mllib.linalg import Vectors
        >>> rdd = sc.parallelize([Vectors.dense([2, 0, 0, -2]),
        ...                       Vectors.dense([4, 5, 0,  3]),
        ...                       Vectors.dense([6, 7, 0,  8])])
        >>> cStats = Statistics.colStats(rdd)
        >>> cStats.mean()
        array([ 4.,  4.,  0.,  3.])
        >>> cStats.variance()
        array([  4.,  13.,   0.,  25.])
        >>> cStats.count()
        3L
        >>> cStats.numNonzeros()
        array([ 3.,  2.,  0.,  3.])
        >>> cStats.max()
        array([ 6.,  7.,  0.,  8.])
        >>> cStats.min()
        array([ 2.,  0.,  0., -2.])
        """
        cStats = callMLlibFunc("colStats", rdd.map(_convert_to_vector))
        return MultivariateStatisticalSummary(cStats)
 
    @staticmethod
[docs]    def corr(x, y=None, method=None):
        """
        Compute the correlation (matrix) for the input RDD(s) using the
        specified method.
        Methods currently supported: I{pearson (default), spearman}.
        If a single RDD of Vectors is passed in, a correlation matrix
        comparing the columns in the input RDD is returned. Use C{method=}
        to specify the method to be used for single RDD inout.
        If two RDDs of floats are passed in, a single float is returned.
        :param x: an RDD of vector for which the correlation matrix is to be computed,
                  or an RDD of float of the same cardinality as y when y is specified.
        :param y: an RDD of float of the same cardinality as x.
        :param method: String specifying the method to use for computing correlation.
                       Supported: `pearson` (default), `spearman`
        :return: Correlation matrix comparing columns in x.
        >>> x = sc.parallelize([1.0, 0.0, -2.0], 2)
        >>> y = sc.parallelize([4.0, 5.0, 3.0], 2)
        >>> zeros = sc.parallelize([0.0, 0.0, 0.0], 2)
        >>> abs(Statistics.corr(x, y) - 0.6546537) < 1e-7
        True
        >>> Statistics.corr(x, y) == Statistics.corr(x, y, "pearson")
        True
        >>> Statistics.corr(x, y, "spearman")
        0.5
        >>> from math import isnan
        >>> isnan(Statistics.corr(x, zeros))
        True
        >>> from pyspark.mllib.linalg import Vectors
        >>> rdd = sc.parallelize([Vectors.dense([1, 0, 0, -2]), Vectors.dense([4, 5, 0, 3]),
        ...                       Vectors.dense([6, 7, 0,  8]), Vectors.dense([9, 0, 0, 1])])
        >>> pearsonCorr = Statistics.corr(rdd)
        >>> print str(pearsonCorr).replace('nan', 'NaN')
        [[ 1.          0.05564149         NaN  0.40047142]
         [ 0.05564149  1.                 NaN  0.91359586]
         [        NaN         NaN  1.                 NaN]
         [ 0.40047142  0.91359586         NaN  1.        ]]
        >>> spearmanCorr = Statistics.corr(rdd, method="spearman")
        >>> print str(spearmanCorr).replace('nan', 'NaN')
        [[ 1.          0.10540926         NaN  0.4       ]
         [ 0.10540926  1.                 NaN  0.9486833 ]
         [        NaN         NaN  1.                 NaN]
         [ 0.4         0.9486833          NaN  1.        ]]
        >>> try:
        ...     Statistics.corr(rdd, "spearman")
        ...     print "Method name as second argument without 'method=' shouldn't be allowed."
        ... except TypeError:
        ...     pass
        """
        # Check inputs to determine whether a single value or a matrix is needed for output.
        # Since it's legal for users to use the method name as the second argument, we need to
        # check if y is used to specify the method name instead.
        if type(y) == str:
            raise TypeError("Use 'method=' to specify method name.")
        if not y:
            return callMLlibFunc("corr", x.map(_convert_to_vector), method).toArray()
        else:
            return callMLlibFunc("corr", x.map(float), y.map(float), method)
 
    @staticmethod
[docs]    def chiSqTest(observed, expected=None):
        """
        :: Experimental ::
        If `observed` is Vector, conduct Pearson's chi-squared goodness
        of fit test of the observed data against the expected distribution,
        or againt the uniform distribution (by default), with each category
        having an expected frequency of `1 / len(observed)`.
        (Note: `observed` cannot contain negative values)
        If `observed` is matrix, conduct Pearson's independence test on the
        input contingency matrix, which cannot contain negative entries or
        columns or rows that sum up to 0.
        If `observed` is an RDD of LabeledPoint, conduct Pearson's independence
        test for every feature against the label across the input RDD.
        For each feature, the (feature, label) pairs are converted into a
        contingency matrix for which the chi-squared statistic is computed.
        All label and feature values must be categorical.
        :param observed: it could be a vector containing the observed categorical
                         counts/relative frequencies, or the contingency matrix
                         (containing either counts or relative frequencies),
                         or an RDD of LabeledPoint containing the labeled dataset
                         with categorical features. Real-valued features will be
                         treated as categorical for each distinct value.
        :param expected: Vector containing the expected categorical counts/relative
                         frequencies. `expected` is rescaled if the `expected` sum
                         differs from the `observed` sum.
        :return: ChiSquaredTest object containing the test statistic, degrees
                 of freedom, p-value, the method used, and the null hypothesis.
        >>> from pyspark.mllib.linalg import Vectors, Matrices
        >>> observed = Vectors.dense([4, 6, 5])
        >>> pearson = Statistics.chiSqTest(observed)
        >>> print pearson.statistic
        0.4
        >>> pearson.degreesOfFreedom
        2
        >>> print round(pearson.pValue, 4)
        0.8187
        >>> pearson.method
        u'pearson'
        >>> pearson.nullHypothesis
        u'observed follows the same distribution as expected.'
        >>> observed = Vectors.dense([21, 38, 43, 80])
        >>> expected = Vectors.dense([3, 5, 7, 20])
        >>> pearson = Statistics.chiSqTest(observed, expected)
        >>> print round(pearson.pValue, 4)
        0.0027
        >>> data = [40.0, 24.0, 29.0, 56.0, 32.0, 42.0, 31.0, 10.0, 0.0, 30.0, 15.0, 12.0]
        >>> chi = Statistics.chiSqTest(Matrices.dense(3, 4, data))
        >>> print round(chi.statistic, 4)
        21.9958
        >>> data = [LabeledPoint(0.0, Vectors.dense([0.5, 10.0])),
        ...         LabeledPoint(0.0, Vectors.dense([1.5, 20.0])),
        ...         LabeledPoint(1.0, Vectors.dense([1.5, 30.0])),
        ...         LabeledPoint(0.0, Vectors.dense([3.5, 30.0])),
        ...         LabeledPoint(0.0, Vectors.dense([3.5, 40.0])),
        ...         LabeledPoint(1.0, Vectors.dense([3.5, 40.0])),]
        >>> rdd = sc.parallelize(data, 4)
        >>> chi = Statistics.chiSqTest(rdd)
        >>> print chi[0].statistic
        0.75
        >>> print chi[1].statistic
        1.5
        """
        if isinstance(observed, RDD):
            if not isinstance(observed.first(), LabeledPoint):
                raise ValueError("observed should be an RDD of LabeledPoint")
            jmodels = callMLlibFunc("chiSqTest", observed)
            return [ChiSqTestResult(m) for m in jmodels]
        if isinstance(observed, Matrix):
            jmodel = callMLlibFunc("chiSqTest", observed)
        else:
            if expected and len(expected) != len(observed):
                raise ValueError("`expected` should have same length with `observed`")
            jmodel = callMLlibFunc("chiSqTest", _convert_to_vector(observed), expected)
        return ChiSqTestResult(jmodel)
  
def _test():
    import doctest
    from pyspark import SparkContext
    globs = globals().copy()
    globs['sc'] = SparkContext('local[4]', 'PythonTest', batchSize=2)
    (failure_count, test_count) = doctest.testmod(globs=globs, optionflags=doctest.ELLIPSIS)
    globs['sc'].stop()
    if failure_count:
        exit(-1)
if __name__ == "__main__":
    _test()